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Received 3 June 1987, in final form 28 September 1987 

Abstract. The analytic properties of energy levels as the functions of coupling parameters 
in one-dimensional quantum mechanical models described by the potentials of delta- 
function type are investigated. Here the following models are considered: (i) the rectangular 
potential well with delta-function barrier, ( i i )  two delta-function wells in the unbounded 
space, (iii) the Kronig-Penney model with periodic delta-function potential, and (iv) the 
Bose gas with delta-function interaction between particles. 

1. Introduction 

The study of analytic properties of the eigenvalues of linear differential operators is 
a very interesting problem of mathematical physics. Its importance is obvious: the 
location and character of spectral singularities determine the convergence properties 
of various perturbative expansions. The first physical model for which this problem 
has been studied in detail is a simple quartic anharmonic oscillator defined by the 
Schrodinger equation 

[--d2/dX2+ (x2- g)*I+(x, g) = E(g)+(x, g) +(*a, g)  = 0. (1) 

This model is of particular interest to field theoreticians because it can be treated as 
a scalar field theory in one-dimensional spacetime. Bender and Wu (1969), Simon 
(1970) and Shanley (1986) argued that the energy levels in (1) as the functions of a 
strong coupling parameter g have an infinite number of square-root type branch-point 
singularities whose physical origin is the crossing of the levels in the complex g plane. 
They demonstrated that the levels of equal parity form a common Riemann surface 
and thus can be obtained from each other by simple analytic continuation. Further 
investigations showed that these properties are not specific for the model (1) only (see, 
e.g., Bender and Happ 1974, Hunter and Guerrieri 1982). 

Today it is not yet clear how the topology of a spectral Riemann surface depends 
on the type of model under consideration. Therefore the accumulation of results 
obtained for various concrete models seems at present to be very useful. Note, however, 
that models with polynomial potentials are not convenient for this purpose, since the 
study of their analytic properties requires the use of rather refined mathematical 
techniques. This is the main reason why there are so few publications on this topic. 

Fortunately, there exists a wide class of models which are much simpler than the 
polynomial ones. They are described by potentials of delta-function type. The corre- 
sponding Schrodinger equations are equivalent to the systems of simple transcendental 
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956 A G Ushveridze 

equations and therefore the analytic properties of their solutions can be studied without 
any difficulties. These models are interesting from the point of view of their field- 
theoretical generalisations. As an example we refer to the non-linear Schrodinger 
model which, being the non-relativistic field theory in two-dimensional spacetime, 
describes the system of bosons interacting via a two-body delta-function potential. 
The Bethe ansatz reduces the N-particle Schrodinger equations for this model to the 
system of N coupled transcendental equations (Lieb and Liniger 1963). 

The present paper is organised as follows. In § 2 we consider the &-symmetric 
rectangular double square-well potential in which the delta function plays the role of 
a potential barrier. Studying the analytic properties of energy levels as functions of 
delta-function ‘height’ we obtain the location of all spectral singularities which are 
found to be of square-root type. We propose a simple qualitative method enabling us 
to elucidate which of the levels cross in the singular points. In 0 3 we investigate the 
large-order behaviour of perturbation expansions for this model and demonstrate that 
it strongly depends on the type of observable to be expanded. In § 4 we introduce a 
new parameter determining the position of the delta-function barrier and study the 
dependence of energy levels on this parameter. We show that the origin of the well 
known phenomenon of ‘quasicrossing’ of levels is the real crossing of these levels in 
a complex plane. The subject of P 5 is the model with two delta-function wells in the 
unbounded space. We demonstrate that though this model has only a finite number 
of bound states, the corresponding energy levels as functions of delta-function ‘depth’ 
have an infinite number of square-root type singularities. We argue that the physical 
nature of these singularities is the crossing of bound states with the quasistationary 
ones appearing when the ‘depth’ of the wells becomes negative. In § 6 we consider 
the case when the delta functions have different ‘depths’. We demonstrate that the 
presence of two parameters in the problem makes possible the appearance of cube-root 
type singularities corresponding to the triple crossing of the levels. In 0 7 we briefly 
discuss the Kronig-Penney model with the periodic delta-function potential and show 
that the fixation of quasimomenta makes the energy levels singular in the central points 
of the coupling constant plane. Section 8 is devoted to the non-linear Schrodinger 
model. We consider only the case of a finite number of Bose particles moving on the 
circle of finite length and demonstrate that an increase in the number of these particles 
complicates the analytic structure of the spectrum. In this work we do not intend to 
study the thermodynamic limit of this model. A subsequent paper will be devoted to 
this topic. 

2. The double square-well potential: symmetric case 

The first model which we discuss here is defined by the Schrodinger equation 

[ - a 2 1 ~ x 2 + 2 g ~ ( x ) l ~ ( x ,  8) = E(g)$(x, 8) $(*I, g) = 0. (2) 
This can be treated as an idealisation of a polynomial double-well potential model 
(1). Here g plays the role of the strong coupling constant and determines (as in the 
case of (1)) the penetrability of the potential barrier. This model is well known in the 
literature (see, e.g., Fliigge 1971). The eigenfunctions of (2) have the form 
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and the eigenvalues are 

Connecting the left and right branches of (3)  at x = 0 by the boundary condition 
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(4) 

and using (4) one obtains the transcendental equation for E ( g ) :  

cot = -g. (6) 

Note that (6) describes only the even part of the spectrum. The eigenfunctions of the 
odd states have nodes at x = 0, and therefore the corresponding energy levels do not 
depend on g. 

It is known that equation (6) has an infinite number of solutions for any real value 
of g. We denote these solutions by E , , ( g )  assuming the usual order of their numeration 

Now let us use equation (6) for the study of singularities of the levels E,(g) in the 
complex g plane. It is natural to expect that in the singular points g, ,  the multiple-valued 
function E(g) defined by (6) has infinite derivatives with respect to g. Then, differentiat- 
ing (6) and using the condition 

we get the equation 

2 L 5  = sin 2 a  (9) 

which together with 

%q cot %q = -g, (10) 

determines the positions of such singular points. Note that (9) coincides with the 
condition of vanishing of the normalisation integrals 

1’ +’(x, g )  dx-  (1 -sin ’-). 
- 1  2 m  

This fact is in full accordance with the analogous result which Bender and Wu (1969) 
and Simon (1970) obtained for the model (1). 

It is not difficult to see that the system of equations (9) and (10) has an infinite 
number of pairs of complex-conjugated solutions. The first several of them can be 
obtained numerically. They are: 

g:” = -3.790 53 f 7.438 96i 

g:2) = -4.360 43 f 13.865 95i 

g:”= -4.721 12*20.2148i 

g r ’  = -4.985 83 * 26.536 6i 

g15’ = -5.195 20* 32.844 5i. 
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The chosen numeration of these solutions corresponds to the increase of their distance 
from the origin. The next singularities can be found by applying the iteration procedure 
to the system 

which, evidently, is equivalent to (9) and (10). For large n the result (the analogue 
of the semiclassical result for the model (1)) is 

g:"' = -In n * in r .  (15) 
The fact that the branches of the sin-' term in (13) are chosen correctly follows from 
the proximity of semiclassical solutions (15) to the numerical ones (12) for any n (even 
for n = 1). We see that, as in the model ( l ) ,  the sequence of singular points tends to 
infinity, but in our case they all lie in the left half-plane of g. This is the first difference 
between the two models. 

In order to determine the character and physical nature of the obtained singularities, 
let us expand equation (6) near an arbitrary point g , .  Using (9) and (10) we conclude 
that 

when g + g , .  This means that we deal with the square-root type branch-point sin- 
gularities and their origin is the crossing of two levels described by the two branches 
in (16). The result is not surprising. It reproduces the properties of model ( 1 )  discussed 
in 0 1. It is worth noticing that expression (16) justifies the assumption (8) and thus 
makes the above-mentioned derivation self-consistent. Writing out the following cor- 
rections to (16), it can be easily understood that the general form of expansion of 
E ( g )  near the singular point is 

In order to answer the main question of this section, i.e. which of the levels cross 
in the point g:"', we consider the path r, shown in figure 1.  Having begun at the 
point g = 0, it passes round the singular point g = gl"' and then goes back to the initial 
point g = 0. Due to the simplicity of equation (6), the analytic continuation of various 
energy levels along this path can be done numerically. By analysing the results obtained 
numerically it can be shown that the analytic continuation along the path r, transforms 
two levels E o ( g )  and E , ( g )  into each other and does not change the level E , ( g )  if m 
differs from 0 and n. This fact, which has been verified for all n s 10, enables us to 
conclude that any singular point gin' is the crossing point only for the levels E o ( g )  
and E , ( g ) .  The existence of composite paths r,, x rn2 transforming E , , ( g )  into E , , ( g )  
for any n ,  and n2 means that all the analytically continued functions form the common 
Riemann surface. 

The topology of this surface is rather non-trivial. Indeed, consider the path S,  
which begins at the point g = 0, passes round the first n singular points g:", si2', . . . , g:"' 
in the positive direction and returns to the initial point (see figure 1). Obviously, S, 
is equivalent to the composite path rl x T2 x . . . x r, which, according to the previous 
reasoning, transforms E , ( g )  into E , ( g ) ,  E l ( g )  into E 2 ( g ) ,  . . . , and E , ( g )  into E o ( g )  
again. Taking the limit n + 00 we see that the infinitely large path S ,  plays the role 
of the 'creation operator' for model (2). 
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I“’ 

Figure 1. A qualitative picture of the location of singular points g:”’ and of the correspond- 
ing paths r, and s, in the complex g plane (model (2)). 

Thus we have seen that, though model (2) is similar to model ( 1 )  (in both cases 
we have two wells separated by the potential barrier), there exists a remarkable 
difference between the topologies of corresponding Riemann surfaces: in contrast to 
model ( l ) ,  only the ground-state energy in (2) has an infinite number of pairs of 
singular points, at which it successively crosses other energy levels; each excited level 
has only one pair of singular points at which it crosses with the ground state. 

Such a difference between the two models ( 1 )  and (2) can be explained as follows. 
Consider a sufficiently far area in the complex g plane (this may be the exterior of 
the large circle), and continue there the spectrum of the system under consideration. 
There exist at least two different ways of such a continuation. The first is based on 
the continuation from the large negative values of g and the second from the large 
positive ones. For model (2) the results are 

n > O  
n = O  

from g - - -a3 
and 

E‘,+’(g) = ( m  + ~ ) ~ . r r ~  m s O  from g =+a (186) 

E‘,+’(g)  = EL-)(g) .  (19) 

respectively. The condition of coincidence of both asymptotics is 

Formulae (18) and (19) imply that E r ’ ( g ) = E j ; ? , ( g )  for any n. This result is not 
surprising. It expresses the above-mentioned fact that the arbitrary &-type path has 
the meaning of the creation operator in (2). The more interesting case arises when 
n = 0 and m is arbitrary. Then equation (19) allows a discrete set of non-trivial solutions 

giving the location of the points at which the levels E, (g )  and E , ( g )  cross each other. 
We see that for large n equation (20) reproduces result (15) obtained by solving 
equations (9) and (10). 

gin’= *in.rr n = 1,2 , .  . . (20) 
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Now let us consider model (1). In the case g = --CO the anharmonic term is small 
in comparison with the harmonic one and, hence, the spectrum of model (1) approaches 
the spectrum of the harmonic oscillator 

El;'(g)=g2+nd- from g = -a. (21a) 
In the second case of g = +00 we have two well separated wells, each being described 
with a good accuracy by the harmonic potential. Therefore the spectrum of (1) is now 

E',+'(g) = m a  from g = +-CO. (216) 
Substituting ( 2 l a )  and (21b) into equation (19) we obtain that it holds for any n and 
m if 

g, = ( n + i m )2'3. (22) 
This means that each level in (1) crosses any other level and the crossing points lie in 
the complex-conjugated points of the right g half-plane, which is in full accordance 
with the results of Bender and Wu (1969) and Shanley (1986). 

The proposed method does not provide an exact calculation of the positions of 
singular points. But it is a good tool for the qualitative analysis of topological properties 
of the spectral Riemann surface. 

3. The properties of the 'strong coupling expansion' 

Now let us discuss the convergence properties of perturbation expansions in powers 
of g. Since g = 0 is a regular point of the function En(g), the expansion of E,(g) near 
this point has a non-zero radius of convergence. This radius (which we denote by 
R{E,(g)} is, evidently, equal to the distance to the nearest singularity of E,(g) in the 
complex g plane. From the previous reasoning it follows that 

and 

R{En(g)) = Ig:"'I n = l , 2 , 3  , . . . .  (236) 
Remember now that the functions Eo(g) and E,(g) cross at the point gin'. This means 
that their expansions near this point have the form (17) and, therefore, the sum of 
both functions Eo(g) and E,(g) must be regular at g=gi" ' .  Analogously, we can 
conclude that the sum Eo(g) + E,(g) +. . .+ E,(g) is regular at all points g!'], 
g, , . . . , gbnl, and hence, the nearest singularity of this sum determining the radius of 
convergence of its perturbation expansion turns out to be ggn+'): 

( 2 )  

R{E,(g)+. . .+En(g)}=Ig:n+')J.  (24) 
It is not difficult to see that the expression (24) allows the simple generalisation 

in which f(z) is an arbitrary integral function. Substituting f( z )  = exp( -pz) into (25) 
and taking the limit n + 00 we obtain that the statistical sum of model (2) 
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is an integral function of g for any values of p. In other words, its expansion in powers 
of g has an infinite radius of convergence. 

We emphasise that this result holds also for model (1). It can be immediately 
proved by calculating large orders of the perturbative strong-coupling expansions by 
means of the saddle-point approximation in the path integral approach. 

How do the asymptotics of the perturbative series behave? To answer this question, 
consider any quantity of the type A ( g )  = 2:=, f( E k ( g ) )  and write the dispersion relation 
for the coefficients of its expansion in powers of g 

For large N the vicinities of nearest singularities of A ( g )  make the main contribution 
to the integral (27). Since in models ( 1 )  and ( 2 )  they are located in the complex- 
conjugated points and are of square-root type, we obtain 

A N  = ( g ~ c , + g $ " ~ ~ ) N - ~ ' ~ =  lgSINN-3'2 cos(Np,+po) (28) 

where ps = arg(g,). Thus, in contrast to the weak-coupling expansion in (1)  in which 
the signs in the terms alternate, the strong-coupling expansion in both models (1) and 
( 2 )  has an oscillative character. The oscillation frequencies are determined by the 
proximity of the singular points g ,  and g $  to the real g axis. 

4. The double square-well potential: general case 

In this section we consider the generalised version of model ( 2 )  described by the 
Schrodinger equation 

[ - d * / d ~ ~ + 2 g S ( ~  - A ) ] $ ( x ,  A ) = E ( A ) + ( x ,  A )  + ( * 1 ,  A )  = O .  ( 2 9 )  

Here A is the asymmetry parameter determining the position of the delta-function 
potential barrier. In contrast to the previous case we assume g to be fixed and study 
the dependence of energy levels on A. The corresponding spectral equation (the 
generalisation of equation (6)) is 

{ c o t [ m (  1 + A ) ]  + c o t [ m (  1 - A ) ] }  = -2g .  ( 3 0 )  

If A =0,  equation (30) transforms into ( 6 ) .  
If g = CO, the delta-function barrier becomes unpenetrable and we obtain two quite 

disconnected wells. We denote the spectra in the left and right wells by EL-"(A) and 
E Y " ( A ) ,  respectively. We have 

E ? ) ( A ) =  n2n2/(1 - c + ~ ) '  ( 3 1 )  
where n = 0, 1 ,  2 , .  . . and (+ = k l .  We see that the levels ,!?\-)(A) and E F " ( A )  coincide 
at the points A('") = ( n  - m ) / ( n  + m ) ,  i.e. 

( 3 2 )  E',- ')(A("")) = E',+')(A("")) = $ T 2 ( n  + m )  2 . 

But this is not the real crossing since the corresponding two states relate to different 
Hilbert spaces. 

Now let us consider the more interesting case of g <CO. If g is large, the penetration 
through the barrier is suppressed (it is of order g - I )  and therefore we can use the 
previous classification of levels by means of quantum numbers n and U. The dependence 
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of E',"'(A) on the 'physical' values of A (in the interval [ - 1 ,  1 1 )  is shown in figure 2 .  
We see that near the points A('") the levels E!,-'(A) and ,!?',"'(A) become close, 
lEh-')(A) - E',+"(A)/ - g-I ,  and exchange their quantum numbers without crossing. 
This phenomenon is known under the name of 'quasicrossing' of levels. The anomalous 
proximity of levels at A = A('") may be an indication of the existence of crossing points, 
Ai""'), in the complex A plane near the real axis, IA("" ' ) -A:nm)(  - g-I. 

To verify this assumption, let us take 

n - m  1 
n + m  g +- P A =- 

and 

E ( A )  = $ n 2 ( n  + m ) ' ( l +  g - ' e (ku)+O(g- ' ) ) .  

(33 )  

( 3 4 )  

Substituting (33 )  and ( 3 4 )  into (30 )  and neglecting the terms of order go we obtain 
the equation for e ( p )  

(-+P)-'+(--P)-' n e b )  m 4 k )  = - 2  
n + m  n + m  (35)  

from which it follows that 

(36 )  

We see from (36)  and (34) that E ( A )  has square-root type branch points. Their locations 
are given by the condition of vanishing of the root in (36 ) :  

( n  + m)' 1 m - n  1 m - n  4nm 
2nm 2 m + n  

h ( n m )  n - m + L (  n - m  *ifi) 
' n + m  g 2 ( n + m )  n + m  * 

(37 )  

From this consideration it follows, in particular, that the physical nature of tunnel 
splitting of the levels in the symmetric case ( A  =0)  is the crossing of three levels in 

-+ 
+1  

A 
- 1  

Figure 2. The qualitative dependence of energy levels on the asymmetry parameter A 
(model (29)). 
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the complex A plane in the vicinity of the origin. It is essential that A is the parameter 
which breaks the 2, symmetry of the model. 

An analogous explanation of the splitting and quasicrossing phenomena can be 
given for other models of this sort, e.g., for model (1) perturbed by any Z,-non-invariant 
term. 

5. Crossing with the quasistationary states 

Until now we have investigated quantum systems in the finite volume. Here we consider 
two models defined in the unbounded space. We describe these models by the following 
Schrodinger equations: 

(38) [ - a 2 1 a x 2 - 2 g 6 ( x ) 1 + ( x ,  g )  = E ( g ) + ( x ,  g )  

and 

[-a'ldx2-g6(x-1)-gs(x+l)lrCl,(x, g ) =  E(g)rCl(x, 8 ) .  (39) 

We see that besides the continuous spectrum the system described by (38) and (39) 
allows a finite number of discrete energy levels at positive values of g.  (If g is negative, 
these models do not have any bound states.) 

If g > 0, model (38) has a single bound state with energy 

E , ( g )  = - g 2 .  (40) 

The fact that this level is regular everywhere follows from the observation that other 
discrete levels with which it could possibly cross do not exist. 

Now consider model (39). If g > 0, it has only two bound states with the energies 
Eb-"(g)  and E F ' ' ( g ) .  They can be obtained from the simple transcendental equation 

d'-Eb"'(g) [ l  +(tanh:-E;"'(g))"] = g a=*l .  (41) 

These levels cannot cross each other since the corresponding wavefunctions have 
opposed parities and thus relate to different invariant Hilbert subspaces. Hence, 
repeating the previous reasoning, it could be expected that each above-mentioned level 
would be regular everywhere. But this is not true! Analysing equation (41) we discover 
that, as in the case of model ( 2 ) ,  the levels E F ' ( g )  have an infinite number of 
singularities located in the points 

si"'= i 2 m i + l n ( 2 m i ) + .  . . . (42) 

What is the cause of this phenomenon? To answer this question let us apply the 
qualitative method proposed in 0 2 to model (39). 

Following this method we find that for large positive values of g there exists only 
one level with the given parity 

Eb"'(g)  = -g*. (43) 

But for large negative values of g instead of the wells we have two delta-function 
barriers and, hence, an infinite number of quasistationary states between them. Neglect- 
ing the width of the levels we can write 

E',"'(g) = (2.rrn)' n = 1,2, .  . . . (44) 
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Substituting (43) and (44) into equation (19) we obtain the locations of the crossing 
points 

gj;"), * 2 m i  (45) 
which reproduce the result (42) with sufficient accuracy. From the coincidence of both 
results it follows that the physical origin of the infinite number of singularities is the 
crossing of the bound-state levels with the quasistationary ones appearing after the 
change of the sign of g. 

6.  Triple crossing 

In this section we discuss the model defined by the following Schrodinger equation: 

[ - d ' / d ~ ~ - f g ( l  -A)G(x+ 1) -ig(l  +A)G(x-  1 ) ] $ ( ~ ,  g) = E(g)$(x, 8 ) .  (46) 
Now the energy levels depend on two parameters g and A. We demonstrate that the 
presence of the second parameter A in the problem makes possible the existence of 
cube-root type branch-point singularities in the complex g plane. These singularities 
can be treated as the points in which the triple crossing of energy levels occurs. 

In order to obtain the locations of all such points, let us consider the spectral 
transcendental equation for (46) 

Introducing a new variable 

z ( g )  = -4-h 
we can reduce equation (47) to the more convenient form 

Let g, be a certain point in the complex g plane. Substituting 

g = g s + s  (50a)  

z(g) = z ( g J  + E (50b)  

and 

into (49) and expanding the right-hand side of (49) in powers of E ,  we obtain 

where 

fI(z) = Z - ' [  ( Z  + 1 - A ) - '  + ( Z  + 1 + A ) - ' ]  

f2( Z )  = ( ~ z ) - ' [ ( z  + 1 - A ) - 2 +  ( z + 1 + A ) - 2 ]  

f3(z) = (3~)- ' [ (z  + 1 - A ) - ' +  ( z + 1 + A  ) - 3 ]  
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and hence we deal with the cube-root type branch-point singularity whose physical 
origin is the crossing of three levels described by the three branches in ( 5 5 ) .  The values 
of the auxiliary parameter for which the triple points exist, the coordinates of these 
points and the corresponding values of the crossed energy levels can be obtained from 
system (54 ) .  After some simplifications we obtain 

A,=*i(zs+ 1) ( 5 6 ~ )  

g,  = z;I( 1 + Z J '  

where z ,  satisfies the equation 

2 
(z ,+ I)-' = 2 m i  + In 

( z s +  1 ) - 2 +  1 ' 

Solving this equation in the large In1 limit we obtain 

and 

g, = 2 m i  - 2  ln (2mi) .  (59 )  

7. The Kronig-Penney model 

The results of the previous sections can be generalised to the models with periodic 
potentials. The simplest model of this sort is the well known Kronig-Penney model 
described by the following Schrodinger equation: 

The spectrum of (60 )  has a band structure. It can be characterised by two quantum 
numbers: the number of the band and the quasimomentum K. If K is fixed, the 
spectrum becomes discrete. The corresponding spectral equation is 

(61 )  
In the particular cases when K = 0, * 77/2 or *T ,  (61) assumes an especially simple form 

m cot(" = -g ( 6 2 6 )  

m tan(" = g. ( 6 2 ~ )  

[cot m- cos Klsin m] = -g. 

m cot = -g ( 6 2 a )  
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Equations (62b) and (62c) determine the edges of the bands. The asymptotic properties 
of the E(g) functions can be investigated by means of the methods described in 0 2. 
It is not difficult to show that these functions have an infinite number of singularities 
located in the points 

gj" '=*in.rr-In(m)+. . . K = * r / 2  (630) 

gl"' = *2in71. - 2 In( m )  +. . . K = O  (636) 

K=*.lr. (63c) = * 1. 21n77 - $  In( m) + . . . 
The physical meaning of these singularities is the crossing of the levels relating to 
different bands but having the same quasimomenta K .  This result can be easily 
generalised for arbitrary values of K. 

Note that the analytic properties of energy levels in model (60) as functions of 
quasimomentum K have been considered in many works, see, e.g., the old work of 
Kohn (1959) and the paper of Avron and Simon (1978). We refer also to the paper 
of Ferrari et 01 (1985) presenting the numerical analysis of the Stark-Wannier metast- 
able states in finite Kronig-Penney crystals extended to the complex field plane. 

8. The interacting Bose gas 

In this section we discuss the model of a Bose gas in which the interaction between 
bosons is determined by the two-body potential of the delta-function type. This model 
is equivalent to the non-linear Schrodinger model which is known to be an exactly 
integrable two-dimensional non-relativistic field theory (Thacker 1980). We consider 
the case of N + 1 particles moving in the circle of unit length and assume N to be 
finite. We do not intend to discuss the thermodynamic limit of this theory, which will 
be considered in a separate work. We show that the analytic properties of energy 
levels in the finite N case can be investigated by using the methods described in the 
previous sections. 

The Schrodinger equation for this model is 

The wavefunctions in (64) are symmetric and satisfy the periodic boundary conditions. 
The Bethe ansatz reduces the differential equation (64) to the system of N + 1 coupled 
transcendental equations 

Their solutions determine the energies of the system 
N 

E k ) =  c k2,(g) 
n =O 

and the total momenta 
N 

P ( g ) =  c k n ( g )  
n = O  



Models with delta-function potentials 967 

(Lieb and Liniger 1963). Introducing new variables 

zn ( 8 )  = ikn ( g ) / g  (68) 

we can rewrite equations (65) and (66) in a more convenient form 

and 

Repeating the reasoning of 4 2 we conclude that the condition that the point g ,  is 
singular has the form 

y /g-I ,=m. 

Differentiating (70), we obtain 

Analogously, it follows from (69) that 

Here 

and 

A n m  ( 8 )  = - [ z n  ( g )  - z m  (g)I-2 (75) 

if n # m. Solving the matrix equation (73) and substituting the result into (72), we 
obtain the relation 

(76) -- a E ( g ) - - 2 g  c z ; ( g ) - g 2  c z n ( g ) A i A ( g ) z m ( g ) .  
ag n,m 

According to (71), if g = g , ,  the left-hand side of (76) is equal to infinity. For finite 
values of z , ( g )  the right-hand side of (76) may be infinite if and only if the matrix 
A , , ( g )  is singular, i.e. if the determinant of A n m ( g )  is zero. Hence, the condition that 
the point g ,  is singular can be written as 

detllAnm(g)llg=gs 

=det  - (Zn(g) -zm(g)) - ’+anm 2 ( z i (g) -zk(g) ) -2-anmgl l  =o.  (77) 
8’8, I/ i # k  

This equation plays the central role in this section. Indeed, (77) together with Bethe 
ansatz equations (69) forms the complete system which enables us to determine the 
locations of all singular points g , .  
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Korepin (1982) has shown that the norms of Bethe vectors are proportional to 
det((A,,(g)ll. This means that instead of (77) one can use the condition 

I 

in full accordance with the analogous result obtained by Bender and Wu (1969) and 
Simon (1970) for the case of model (1). 

Now let us try to find the ground-state energy singularities. We confine ourselves 
to the investigation of those singularities which are located sufficiently far from the 
origin in the left half-plane of g. It is known (Thacker 1980) that for infinitely large 
real negative values of g the ground state of the system is determined by the so-called 
( N  + 1)-string configuration of the ‘momentum’ space 

(79) z, ( g  ) = N/ 2 - n 

z A g )  = N / 2 -  n + e,(g) 

g = -W. 

Therefore it is reasonable to search the solutions of equations (69) and (77) in the form 

(80) 

assuming E,(g) to be small if Re g + -00. Solving system (69) with respect to differences 
E, ( g )  - E, + ( g )  and preserving only the leading terms, we obtain 

E,(g)--E,+l(g)= c ( n )  exp[g(N-n)(n+1)/21 n = 0 , 1 ,  . . . ,  N - 1 .  (81) 

Here 

and 

Equation (77) in the same approximation assumes the form 

n -0 

Here f ,  and f are the (N + 1) x ( N  + 1) matrices 

(84) 

and 

t n  = a i n a k n  + a i , n + l a k , n + l  - a t n a k , n + l  - a k n a i . n + l .  (85b) 

Substituting (81) into (84) we obtain the equation containing only the g variable 

de t ( i (g )  -gf)lg=g, = 0. (86) 

i i ( g ) =  C c - I ( n )  exp[-g(N-n)(n+l ) /2] f f l .  (87) 

Here 
N-l  

n=O 

It is not difficult to see that g, = 0 satisfies equation (86). But this solution is not that 
of the initial problem since the derivation of equation (86) assumes g, to be sufficiently 
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large. Denote by A,(g), n = 1 ,2 , .  . . , N, the non-zero eigenvalues of the matrix i ( g ) .  
Then equation (86) can be reduced to the system of N disconnected transcendental 
equations 

ss=A.(gs) n = 1, .  . . , N. (88) 

Now we consider concrete examples. 
(i) N = 1 (two-particle case). In this case 

1 -g /2  A,(g)=ze . 

Solving this equation, we obtain 

ghk’ = 47rki - 2 ln(8~rki)  + . . . k+W. 

(ii) N = 2 (three-particle case). In this case 

A,(g) =;e-’ 

A2(g) = 

for which we have two series of solutions 

gik’ = 27rki -In( 127rki) + . . . 
gjk’ = 27rki - ln(47rki) +. . . k + m .  (94) 

A,(g) =se 

(93) 

(iii) N = 3 (four-particle case). In this case 

(95) 

(96) 

(97) 

I -3g/2 

A,(g) = (L - 3 g / 2 + 1  36e-2g) + [ (i+e-3g/2)2 + (&e-2g)2]v2 I2e 

A3(g) = (&e-3g/2 +$e-2g) - [(&e-3g12)2+ ($e-2g)2]1/2 

and thus we have 

g:“’ = $Trki - iln(8.rrki) + . . . (98) 

gSk’= .irki-$ln(l87rki)+. . . k + m .  (99) 

gik’  = $ r k i  -$n( 16rki)  + . . . (100) 

Thus we see that the ground-state energy in model (64) in the ( N +  1)-particle case 
has N infinite series of singularities in the complex g plane. The physical origin of 
these singularities is the crossing of the ground-state energy with excited energy levels. 
This fact can be proved by means of the qualitative method described in § 2. A more 
detailed analysis of this model from the point of view of its analytic structure will be 
presented in a separate work. 
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